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Abstract
Purpose—Learning mathematics is a complex process, requiring 
many conceptual lenses and rich data sources to document and 
understand students’ construction of knowledge. The purpose of 
this article is both to introduce a unique database on students’ 
mathematical learning and to describe analytical techniques used to 
study students’ growth of the knowledge of mathematics and 
language.
Design/Approach/Methods—Our approach includes the following 
aspects: First, we describe a unique collection of video-taped 
recordings of longitudinal and cross-sectional studies of diverse, U.S. 
students, learning mathematics (Video Mosaic Collaborative, VMC). 
Second, we introduce our analytical methods, which utilize the 
database for collaborative study of students’ learning. These 
methods include video-narrative analyses that display fine-grained 
examinations of interactions among students who are solving 
engaging problems that require them to reason mathematically 
and to represent their understandings with language and non-
language forms. These analyses, referenced as VMCAnalytics, 
demonstrate the accessibility and flexibility of the database to study 
relationships among students’ mathematics and language learning. 
Findings—The findings generated are illustrated by two examples 
demonstrating the accessibility and flexibility of the database to 
study relationships between mathematics and language learning 
(mathematics register). 
Originality/Value—The contribution of our work is illustrated by 
describing the rich database; employing a collaborative research 
approach; and signifying our understanding of relationships among 
students’ mathematical and language learning.
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Introduction and Overview

Learning mathematics is a complex process that requires a multiplicity of 
conceptual lenses and a rich data set to attempt to fully understand this process. 
Too often, however, the benefits of mathematics education research are limited 
to the community of mathematics education researchers and their students. 
Furthermore, many relevant conceptual perspectives include those generated by 
mathematics education researchers, mathematicians, applied linguists, discourse 
analysts, developmental psychologists, learning scientists, among others. In 
addition, the data that are available, often are insufficiently robust to support 
sophisticated, multidisciplinary, multi-layered, fine-grained analyses.

Close examination of students’ learning processes requires a rich set of data 
that affords opportunities to identify and clarify details. In order to make records 
of students’ learning behaviors more accessible and permanent, education 
researchers have, for decades, used video recordings of learning within classroom 
contexts and outside of school. Careful examination of video recordings supports 
the study of how ideas are built by students, and also how best to reveal the 
subtleties of students’ thought processes. These include tracing students’ 
cognitive growth and their use of the specialized language of mathematics in 
various social settings. Such examinations may provide some insights into how 
social processes influence students’ personal cognitive development (Goldman, 
Pea, Barron, & Derry, 2014). These records permit both researchers and 
educational practitioners to collaborate in their efforts to develop new knowledge.

Digital tools allow researchers to explore individually or collaboratively, both 
within and across disciplines, students’ and teachers’ interactional processes in 
new ways; including tracing interactions on video records, excavating massive 
amounts of data, and capturing classroom learning processes. Digitally-enhanced 
tools for data collection and analyses generate large amounts of data in various 
modalities, offering opportunities to explore, combine, examine, and share data. 
Fine-grained examination offers opportunities to discover subtleties of students’ 
thought processes, such as tracing students’ cognitive growth, thus providing 
insights into how social and language processes influence students’ cognitive 
development (e.g., Wilkinson, in press a).

In the case of students’ mathematics learning, careful analysis of interactions 
among students, and between students and teachers, supports a close 
examination of how students build mathematical ideas and communicate them 
via language; this process of discovery can be used in both instruction and 
assessment (e.g., Vanderhye & Zmijewski Demers, 2008; Powell, Francisco, & 
Maher, 2003). Furthermore, videos serve as a powerful tool for tracing students’ 
development of mathematical ideas and ways of reasoning over time (McDuffie 
et al., 2014), as well as of their acquisition and regulation of the oral language 
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that supports this learning (e.g., Bailey & Heritage, 2018).
A major database of students’ learning mathematics is highlighted in this 

article. The database was developed over three decades by Rutgers University 
Library, with support from the National Science Foundation: The Video Mosaic 
Collaborative (VMC). This digital repository, housed at Rutgers University, 
stores over 400 hours of video-data, metadata, and other research materials 
such as transcriptions, student artifacts, and references to publications. The 
VMC is searchable by several factors including a student’s grade, mathematical 
strand, and mathematical problem; and it is available worldwide. Four 
thousand additional hours from research studies are in the process of being 
added. Colleagues are welcome to join and participate in the VMC; the 
process for participation is detailed on the VMC: https://videomosaic.org/.

The VMC also stores selected analyses of elements of the database: The 
VMCAnalytics, which are video narratives describing and analyzing students’ 
learning processes. The VMCAnalytics consist of a series of annotated video 
events created from and linked to their original video-taped recordings of 
teaching and learning mathematics. These published video narratives, available 
worldwide as open source, have been used for research, instruction, and as an 
assessment tool; they are linked to scholarly publications.

As demonstrated by researchers in the learning sciences, collaborative design 
with computer tools can foster productive collaborative learning processes (Hmelo-
Silver, 2012; Kafai, Ching, & Marshall, 1997; Kolodner et al., 2003). Thus, the 
VMCAnalytics display a researcher’s (or team of researchers’) selection segments of 
video-taped learning events; a definition of them; the annotation of each element 
of the event; and linkages among them (Agnew, Mills, & Maher, 2010). 
VMCAnalytics are constructed to serve particular purposes, such as showing the 
variety of notations, representations (including language and non-language forms), 
strategies and/or models used by students in mathematical problem solving. These 
video narratives can be supported by other resources (e.g., transcripts of the 
language used; student artifacts; participants’ commentary) and may be linked to 
the dissemination of research findings, such as via presentations at both research 
conferences and research publications. After the VMCAnalytics are published on the 
VMC, they can be shared and analyzed further.

We present, as examples, two VMCAnalytics, with corresponding, detailed, 
language analyses. These examples reveal students’ mathematical reasoning as linked 
to mathematical language knowledge—the mathematics register, which is both 
interconnected and integrated in students’ interactive learning activities.

The first example focuses on an event with Ariel, a bilingual student, and 
illustrates the process of transitioning from the everyday oral English to the more 
specific language used in learning of an aspect of algebra (Sigley & Wilkinson, 
2015). In contrast with everyday oral English, the more specific language of the 
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mathematics register certainly follows expected conventions and may even be 
considered more precise. This may present some obstacles for students to 
transcend if they are acquiring the English as a new language and are not given 
adequate support (Chan, 2015; Moschkovich, 2018; Wilkinson, in press a).

The academic language register more generally refers to “the specialized 
language, both oral and written, of academic settings that facil itate 
communication and thinking about disciplinary content” (Nagy & Townsend, 
2012, p. 92). This register of school language frequently consists of highly 
technical and precise language that is densely structured through unique 
grammatical patterns, specialized vocabulary, and text organization (Sigley & 
Wilkinson, 2015). Academic uses of language enable student to access and 
engage with the school curriculum (Bailey & Heritage, 2008). The focus of this 
analysis is on the process of transitioning from Ariel’s use of everyday 
conversational language to the discipline-specific language of mathematics. 
Ariel was a 13-year-old student in 7th grade at the beginning of this study; his 
home language was Spanish. He participated, for more than a year and a half 
in an after-school, informal-mathematics experience as he formed algebraic 
concepts to solve problems, using the required oral and written language.

For the second example, we present Stephanie, a nine-year old 4th grade 
student who explored and constructed her justification for a general solution to a 
counting problem (Bailey, Maher, & Wilkinson, manuscript in preparation). The 
event presented in this paper represents Stephanie’s proof-like reasoning and was 
extracted from a longitudinal study following the students’ reasoning from 
elementary through secondary school (Maher, Powell, & Uptegrove, 2010). The 
students investigated a counting task that involved justifying their solution to 
finding all possible towers of a certain height when selecting from two colors. 
With her small-group classmates, Stephanie used her own invented notation and 
produced a justification by cases. Our analysis identifies elements of everyday and 
academic language, including a detailed description of her use of elements of the 
mathematics register. Stephanie incorporated subordinating language devices, 
revealing complex language. Combined with her contextualizing of details, 
Stephanie mixed elements of everyday conversational language with the oral 
mathematics register for her expression of mathematical ideas and symbols to 
present her argument by cases.

Learning Mathematics: Students’ Construction of Mathematical 
Ideas by Engaging with Challenging Tasks

Students learn mathematics as a result of their efforts to make sense of 
mathematical concepts and procedures during their problem solving. Evidence 
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shows that students create their own meanings for themselves and reason 
thoughtfully by providing convincing arguments for their solutions (Mueller & 
Maher, 2009; Mueller, Yankelewitz, & Maher, 2012; Lindow, Wilkinson, & 
Peterson 1985; Wilkinson, Martino, & Camilli, 1994).

Learning mathematics requires students to coordinate multiple efforts, 
including: building representations of knowledge (language and non-language 
based); accessing and/or constructing their own relevant mathematical 
knowledge; and mapping representations to that knowledge. At the same time, 
students must engage all of these efforts to establish a basis for action toward 
problem solving, which includes oral language and communication (Davis & 
Maher, 1990). Students’ constructing mathematical knowledge proceeds best by 
connecting students’ curiosity with their spontaneous recognition of patterns and 
relationships (Baroody & Ginsburg, 1990).

Research has established that even young children, prior to formal schooling 
formulate and use the concept of mathematical proof in justifying solutions to 
problems (Maher & Martino, 1996). The research of Maher and Yankelewitz 
(2017) provides an example of this complex process of reasoning. Their research 
has established that children, both primary and middle-school aged, can verbally 
articulate arguments in the form of proof by cases; induction; upper/lower bound 
and contradiction (Maher & Martino, 1996; Maher & Davis, 1995). The 
justifications that students produce may result from their coordinated efforts to 
make sense of the problem, notice patterns, and pose hypotheses (Mueller et al., 
2012; Maher & Martino, 2000). Research has established that students continue 
in their efforts to refine their solutions through discussions, as they negotiate 
meaning with other students and structure their own investigations (Weber, 
Maher, Powell, & Lee, 2008; Maher, 2005). Finally, there is evidence that when 
students articulate convincing mathematical justifications (with language and 
non-language representations), these students, in turn, further refine their own 
understandings of mathematical reasoning, which can then assist their efforts to 
validate mathematical statements for themselves and others (Yackel & Hanna, 
2003).

The research cited above, as well as the work of others, has firmly established 
that the design of tasks is an essential element to create the optimal conditions 
for students’ building mathematical ideas and their language and non-language 
representations (Sullivan et al., 2014). Tasks should engage students and 
encourage them to deploy all of their relevant resources and personal knowledge 
to problem solving. Mathematics is defined by a combination of natural 
language, symbolism, models, and visual displays for expressing ideas; and as 
such, the discipline is multisemiotic (O’Halloran, 2015). Consequently, during 
problem-solving, students draw from these resources, as they move between oral 
and written modes of communication. Students must make connections among 
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these three semiotic systems; importantly, they must use and understand 
language that is highly technical, dense and specific (Wilkinson, 2015).

From this perspective, language and other forms of communication support 
students’ refinement of representations, that are fundamental to their building 
mathematical knowledge (Moschkovich, 2018; Wilkinson, in press b). As 
Schoenfeld (1992) has noted, communication, including both oral and written 
language is by itself “an act of sense-making that is socially constructed and 
socially transmitted” (Schoenfeld, 1992, p. 339). Mathematical situations are 
communicated through statements of problems or tasks, and students use this 
information to construct their mental representations (Davis & Maher, 1990).

In sum, students express and refine their mental representations by creating 
external representations in the forms of language (both oral and written), 
drawings, symbols, written texts, etc. that can be communicated to others; this 
process, in turn, has the potential to interact and impact students’ learning 
(O’Halloran, 2015).

Learning Mathematics: The Mathematics Register and Communication 
during Problem Solving

Central to our perspective is the view that learning mathematics is a socially-
mediated process that encourages students to deploy their resources—
language and non-language-based—to the problem-solving tasks at hand.

This perspective aligns with U.S. national practice standards for mathematical 
learning. For example, the Common Core State Standards for Mathematics 
(Common Core State Standards Initiative, 2010) define optimal mathematical 
practices which must include those that stimulate students to “make sense of 
problems and persevere in solving them”, “construct viable arguments and 
critique the reasoning of others”, “model with mathematics”, and “conjecture”. 
Thus, from the U.S. standards standpoint, the mathematical processes of thinking, 
discovery, and problem solving are central to discovering mathematical patterns, 
gaining mathematical insight, and applying mathematics to real-world situations. 
Through communication with others—orally and in writing, students explore, 
offer conjectures, find patterns students build conceptual and procedural 
understandings of mathematical knowledge.

Thus, communication, both oral and written language, is central to success 
in having all students meet the standards of mathematical practice. The 
relationships among learning and teaching mathematics, and language and 
literacy are complex and require both students and teachers to know and use a 
variety of types of knowledge, including knowledge of the language (both oral 
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and written), as well as non-linguistic representations of mathematical ideas 
such as symbols; visual representations such as charts and graphic; and 
gestures. Moschkovich (2008) has characterized these multiple sources as 
students’ use of “multiple material, linguistic, and social resources” (p. 556). 
Her prior research has described in a detailed manner resources such as the 
multiple meanings expressed by students, the information displayed in graphs, 
gestures, charts, metaphors, and code-switching between two or more 
languages (Moschkovich, 2008, 2015, 2018).

Students’ language practices, including both oral and written, support their 
building mathematical understanding by interacting with others during the 
problem-solving processes (Wilkinson, in press a). Consequently, learning 
mathematics is a process of socialization into mathematical discourses (Barwell, 
2018; Sfard, 2008; O’Halloran, 2015).

The Mathematics Register

Similar to other disciplines, mathematics employs its own way of speaking and 
writing the discipline (Halliday, 1975; Wilkinson, 2015, in press a). Mathematics is 
dependent to a significant extent on language, both oral and written, and thus is 
not a non-verbal subject (Barwell, 2018; Moschkovich, 2015; Avalos, Medina, & 
Secada, 2018). As Ní Ríordáin & O’Donoghue (2009) summed up: “mathematics 
is not ‘language free’” (p. 47). There are language challenges that are inherent to 
mathematics learning.

What makes an instructional language specialized, such as mathematics, is 
how lexical choices and syntactic constructions combine in specific ways to make 
language more or less linguistically dense or “complex” (Ravid, Dromi, & Kotler, 
2010, p. 126).

A register refers to any language variation that is socially shaped by the 
participants’ interactional engagement and is distinguished by the co-
occurrence of particular linguistic features in that situation. Consequently, a 
register serves a singular interactional purpose in a particular context. As Biber 
& Conrad (2001) note: “Register variation is inherent in human language: a 
single speaker will make systematic choices in pronunciation, morphology, 
word choice and grammar reflecting a range of non-linguistic factors” (p. 4).

The mathematics register references the language of the discipline 
characterized by both lexical and syntactic characteristics: a highly technical 
vocabulary, semi-technical terms, dense noun phrases, complex subordinated 
clauses, conjunctions with precise meanings, and implicit logical relationships 
(Schleppregrell, 2007); as well as discourse level organization argumentation 
and proof (Uptegrove, 2015; Barwell, 2018; Moschkovich, 2018). The 
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relationships among linguistic, symbolic, and visual forms of representation of 
mathematical knowledge are quite complex. They are related in multiple and 
intricate ways, and they evolve throughout schooling and beyond. For 
schooling, students are required, and sometimes encouraged and supported 
directly in their efforts to learn to speak, read, and write mathematics in the 
more specific register of the discipline (Herbel-Eisenmann, Johnson, Otten, 
Cirillo, & Steele, 2015; Avalos et al., 2018). The importance of language—
both oral and written—is not limited to mathematical learning and teaching. 
For students to succeed in school, they must also display what they know on 
standardized tests, which often consist of assessments embedded in dense 
texts, such as complex word problems (Bailey, 2000/5; Frantz, Starr, & Bailey, 
2015; Frantz, Bailey, Starr, & Perea, 2014; Martiniello, 2009; Cheuk, Daro, & 
Daro, 2018; Wylie, Bauer, Bailey, & Heritage, 2018).

Regarding mastery of this register, research has shown that at first, and also 
continuing throughout the school years, students often do not express their 
mathematical understandings by employing the mathematics register (Barwell, 
2018). In contrast, students express ideas with representations that are personally 
meaningful but often idiosyncratic (Sigley & Wilkinson, 2015). Over time, 
students acquire the mathematics register and are able to apply that knowledge, 
as appropriate, in the variety of tasks as required by schooling (Uptegrove, 2015).

A Rich Database of Students’ Mathematical Problem Solving and 
Video-Narrative Analyses

In an effort to understand the complexity of the process of learning mathematics, 
multiple conceptual lenses and a rich data source are required. One major 
database of students’ learning mathematics was built by Rutgers Libraries: the 
Video Mosaic Collaborative (VMC) (https://videomosaic.org). The data originated 
from the research program of Professor Carolyn Maher with support from the 
National Science Foundation (Maher, 2005; Maher & Davis, 1995; Maher & 
Martino, 1996, 2000; Maher et al., 2010; Maher & Yanekelewitz, 2017; Mueller & 
Maher, 2009; Wilkinson & Martino, 1993; Wilkinson et al., 1994). The database 
was developed by Rutgers University Library, with support from the National 
Science Foundation. The process of development is referenced in a series of 
research reports of students’ learning of mathematics (Maher et al., 2010; Maher 
et al., 2014; Palius & Maher, 2013; Mueller & Maher, 2009; Maher & Yankelewitz, 
2017). The types of data that are available to be searched include the following 
chacteristics: United States grade level of the student; mathematics strand (e.g., 
algebra, geometry); mathematics problem (e.g., binomial expansion, equivalent 
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fractions, division of fractions); mathematics tool employed (e.g., graph paper, 
unifix cubes, calculator); a variety of artifacts (e.g., video-taped interactions; 
audio-taped interactions; transcriptions; the National Council of Mathematics 
Grade Range; the National Council of Mathematics Process Standard; the 
National Council of Mathematics Content Standard; forms of reasoning, 
strategies, and heuristics (e.g., recognize a pattern, recursive reasoning, direct 
reasoning); participants; mediators (adults); gender of participants; ethnicity of 
participants; setting (e.g., classroom, work area); location (the name of the school 
or other venue); video-camera views (e.g., student work view; teacher view; 
student view); date captured; related publications; and related elements of the 
VMC. Detailed examples of the kinds of data available in the VMC and their prior 
usage for studies are available in published, research reports (e.g., Maher et al., 
2010; Maher et al., 2014; Maher & Yanekelwitz, 2017; Mueller & Maher, 2009; 
Palius & Maher, 2013; Powell et al., 2003; Sigley & Wilkinson, 2013, 2015; 
Wilkinson & Martino, 1993; Wilkinson et al., 1994).

The VMC also stores selected analyses of elements of the database and 
offers users the opportunity to create video narratives describing and 
analyzing students’ learning processes. These stored video-narratives have 
been used for research, instruction, and as an assessment tool; and are linked 
to scholarly publications (Agnew et al., 2010; Maher & Yankelewitz, 2017). 
Two examples of VMCAnalytics are described in the next section of this report.

Students’ Mathematical Reasoning, Communication and Language 
Representation: Two Examples of Video-Narrative Analyses

The following two examples reveal how students’ knowledge of mathematics and 
use of the mathematics register are both interconnected and integrated in a 
small-group interactive learning activity.

Ariel. The first example provides an analysis of one student’s reasoning 
process and illustrates how knowledge of both mathematics and mathematical 
language are interconnected and integrated in a dyadic learning activity. The theme 
of this example is the distinction between the everyday, conversational language 
and the academic language register of mathematics. The detailed framework for 
analysis and the results of the prior studies are described in published research 
reports (Sigley & Wilkinson, 2013, 2015; Wilkinson, in press a, in press b).

The focus is upon the process of transitioning from the former to the latter in 
the context of the discipline-specific language of mathematics (Sigley & 
Wilkinson, 2015). Ariel is an adolescent bilingual, whose home language is 
Spanish. He participated, for over 18 months, in an after-school, informal-
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mathematics experience as he formed algebraic concepts to solve the Building 
Ladders Problem using the required oral and written language Tracing Ariel’s 
Algebraic Problem Solving: A Case Study of Cognitive and Language Growth (Sigley & 
Wilkinson, 2013).

The VMCAnalytic (video-narrative analysis) is given in Figure 1 and can be 
accessed directly: http://dx.doi.org/doi:10.7282/T3N0186C.

Title: Tracing Ariel’s Algebraic Problem Solving: A Case Study of Cognitive and 
Language Growth

Name: Co-Creators: Robert Sigley and Louise C. Wilkinson
Persistent URL: http://dx.doi.org/doi:10.7282/T3N0186C
Date Created: 2013–11–04T00:08:57–0500
Description: While research has shown that understanding the concept of a 

function is essential for success in other areas of mathematics (Rasmussen, 2000) 
students continue to struggle learning the concept (Vinner & Dreyfus, 1989). 
Research has revealed that young children, who are engaged in problem-solving 
activit ies designed to elicit justif ications for their solutions, develop an 
understanding of fundamental algebraic ideas such as function (Kieran, 1996; 
Yerushalmy, 2000). Davis (1985) advocated the introduction of early-algebra 
learning to elementary school students as young as grade 6. He argued that the 
idea of function can be built intuitively by students as they engage in explorations 
of problems requiring identification of increasingly more challenging patterns; 
further Davis claimed that students can build the conceptual idea before formal 
notation is introduced. Davis (1985) offered sets of algebra tasks for student 
exploration. The students constructed solutions that were expressed with linear, 
quadratic and exponential functions (Giordano, 2008). Extending this work, 
Bellisio and Maher (1998) studied students who provided verbal expressions of 
algebraic function prior to learning to write the rules in symbolic form. For 
additional background on students’ algebraic learning see the video narrative, 
Ariel Constructing Linear Equations for “Guess My Rule” and the “Ladder” 
Problems: http://dx.doi.org/doi:10.7282/T34Q7WS9.

This analytic describes how one student, Ariel, builds an understanding of the 
linear function concept and represents his understanding of the basic algebra ideas 
underlying the construction. One focus is to see if students could provide a general 
solution to the problem. A second focus is on use of the mathematics register. The 
analytic shows Ariel challenged to solve a task that requires finding how many light 
green Cuisenaire rods are needed to build a ladder with various number of rungs. The 
shortest ladder has only one rung and can be built with 5 light-green Cuisenaire rods. 
A 2-rung ladder would be modeled using 8 light-green rods. The problem was 
presented as follows: The Ladders Problem: Build a rod model to represent a 3-rung 
ladder. How many rods did you use? How many rods would you need to build a 
ladder with 10 rungs? How could you represent the number of rods needed if you 
were to build a ladder with any number of rungs? Justify your solution. The analytic 
reveals how Ariel first approaches the problem using an arithmetically proportional 
approach to build a recursive composite function that depends on whether the 
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numbers of rods are even or odd. When he revisits the problem, 18 months later, his 
approach changes. He develops a function table, uses first differences, and constructs 
a general solution to the problem. His gradual adoption of the mathematics register is 
exemplified in his oral explanation of the meaning of his symbolic notation. The 
analytic highlights that early, informal open-ended problem-solving tasks provide 
students opportunities to construct their knowledge. These problem-solving tasks are 
explorations at the heart of developing mathematical understanding—not as simple 
follow-up activities to procedural instruction. One implication of this work is that 
teachers include both time and tasks for students to explore, examine, revisit, and 
connect ideas and concepts through investigations. In so doing students have 
authentic opportunities to build strong intuitions of the problem conditions. Students’ 
engagement in activities, such as the Building Ladders Problem, provide them with the 
foundation for gaining insights and deeper understandings of mathematics. Ariel used 
such an opportunity and built his algebra knowledge. His success is revealed in the 
elegance of his solution, the understanding of his earlier work, and his confidence in 
offering clear justifications.

Figure 1. Tracing Ariel’s algebraic problem solving: A case study of cognitive and language growth.

Continued

The following analysis shows the progression of Ariel’s mathematical 
understanding of the Building Ladders Problem, including his increasing 
sophistication in using the mathematics register as linked to his mathematical 
understanding. Ariel was fluent in everyday English and did not receive English 
as a second language support services. However, initially, when expressing 
his solutions using everyday language, Ariel revealed that he did not 
understand the standard way one talks and writes mathematical discourse 
(Ravid et al., 2010).

At an early point during his problem-solving process, Ariel formulated a 
composite rule for his solution; he constructed two separate rules, one for the odd 
number of rungs of a ladder, and one for the even number. Ariel stated: For odd 
numbers, I go to the nearest even number and take one-half of that even number, 
count the rods for a ladder with that many steps, multiply by 2, subtract 2 and add 
3. After Ariel stated that odd number rule and wrote it down, he justified his work 
with the statement: Because for every new thingy it is 3 rods and it will give me 29. 
Ariel made progress on his construction of his mathematical understanding, and 
he expressed his justification by including an invented unconventional or slang 
term, thingy, to indicate the precise mathematical referent.

A year and a half later, when Ariel was presented with the same problem, he 
responded as follows:

Because, I just looked at it and if you multiply each by 3, it’s gonna be, m plus 
the y intercept, which is gonna be 2, cause if it’s adding 3 each time, if you 
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reverse this to when it was at zero, it would be a 2 right there. Wait, yeah, it’d 
be a 2 right there. And then, this ［pointing to 3］ would be your slope of 3, and 
your y intercept of 2 [indicating the value of (0, 2)]. And then it’s a linear 
equation.

Ariel’s later solution to the problem included greater specificity in 
mathematical language, revealing an understanding of how mathematical 
symbolism is used in representing a solution. He incorporated some linguistic 
complexity in his expression. Additionally, he revealed his metalinguistic 
awareness of the procedural aspects of the process. Many of Ariel’s vocabulary 
choices with his first problem-solving encounter as a 7th grade student employed 
everyday language (it’s gonna be). In contrast, in 8th grade, his precise use of the 
technical term linear equation, exemplified the mathematics register. Ariel used 
the syntactic patterns of the conditional (if ), nominal (which), and adverbial 
(because, when) subordinators. These patterns rendered his explanation 
linguistically dense, which is a defining characteristic of the mathematics register. 
His pathway to providing an elegant solution to the Building Ladders Problem, over 
an extended period of time, revealed his efforts to coordinate greater conceptual 
complexity with greater linguistic complexity and precision. Ariel’s everyday 
language, including subordinating devices, combined with his contextualizing of 
details (i.e., non-specific referents, such as it, this and there, and his use of 
gestures), demonstrated that he adopted some elements of the mathematics 
register for expression.

This example suggests that mathematical teaching should have a focus 
beyond vocabulary learning. The perspective on teaching and learning through 
problem solving that is taken here emphasizes the complexity of simultaneously 
learning mathematics and the broad domains of the language of mathematics. 
Problem solving is one way that students are accorded opportunities to develop 
deep understandings of mathematical concepts; to acquire the language of 
mathematics (the mathematics register); and to adopt multiple ways of 
representing mathematical solutions.

In sum: Students should be provided with opportunities to forge ideas 
through thought, and test them in discourse with other students and teachers. 
These opportunities create the optimal circumstances for students to construct 
their own mathematical understandings, and then they may then build a more 
complete knowledge of the mathematics register. The analysis of Ariel’s problem 
solving illustrates how mathematical knowledge, and language knowledge are 
both interconnected and integrated in an interactive learning activity.

Stephanie. The second example focuses on a 4th-grade student’s exploration 
and construction of a justification for a general solution to a counting problem in 
the context of a small group interaction. The theme of this example is Stephanie’s 
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use of language throughout this event, in which she displayed complex patterns 
of specific, linguistically dense formulations, which are the defining characteristics 
of the mathematics register. During the group problem solving, all four members 
attended to each other’s comments, thus sustaining their engagement with the 
mathematical problem. The detailed framework for analysis and the results of the 
prior studies are described in published research reports (Ortiz, 2014; Krupnik, 
2014; Bailey et al., manuscript in preparation).

The source for this event is the combinatorics strand of students’ 
mathematical reasoning (https://rucore.libraries.rutgers.edu/rutgers-lib/52147/
emap/1/standalone). The event was extracted from the Rutgers-Kenilworth 
longitudinal study of children’s reasoning: Stephanie’s Journey with the Towers 
(Grades 3–8): A Metaphor for Making Connections (Ortiz, 2014). Four students 
(Stephanie, Milin, Jeff, Michelle) were asked to convince the adult facilitator 
(Professor Carolyn Maher) and each other of their solutions to a counting task of 
building all possible Unifix-cube towers, 3 cubes tall, selecting from two colors. 
Counting tasks that investigated variations of tower problems were introduced to 
these students in 3rd grade, and continued throughout their secondary years. In 
the counting tasks used for this strand, their work together revolved around the 
task of sharing justifications (Krupnik, 2014, 2017).

The duration of the event is approximately 4 minutes and 30 seconds and is 
taken 18 minutes into the 38-minute session (https://doi.org/doi:10.7282/
T3BV7JDG).

Title: Stephanie’s Journey with the Towers (Grades 3–8): A Metaphor for Making 
Connections

Name: Creator: Solaris Ortiz
Date Created: 2014–04–15T21:35:46–0400
Persistent URL: https://doi.org/doi:10.7282/T3BV7JDG
Description: This analytic shows that “learning is primarily metaphoric—we build 

representations for new ideas by taking representations of familiar ideas and 
modifying them as necessary, and the ideas we start with often come from the earliest 
years of our lives” (Davis, 1984). Davis’ idea of teaching was centered on the idea that 
students should be provided with opportunities to build assimilation paradigms. 
Assimilation paradigms were created when students used something from their past 
that they already knew (a tool, a representation, a model, an experience) in order to 
take in and process new information. The “something they already knew” is an 
assimilation paradigm (Davis, 1996).

The events followed Stephanie, a student in the Rutgers longitudinal study of 
children’s reasoning. As a 3rd grader, she builds towers 4 cubes tall selecting from 
two colors of Unifix cubes (interlocking cubes of different colors that children use to 
build models when solving mathematics problems), red and yellow. Stephanie was 
part of a group interview entitled with Jeff, Michelle, and Milin, where she had an 
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Initially, the students were asked by Professor Maher: You gotta convince me 
that there are 8 and only 8 and no more or fewer. In an attempt to convince her 
classmate Jeff that she had attempted to account for all possibilities, Stephanie 
used a “modified proof by cases” approach to organize the towers as follows: 
towers with no blue cubes, towers with exactly 1 blue cube, towers with exactly 
2 blue cubes stuck together (adjacent to each other), towers with exactly 3 blue 
cubes, and towers with exactly 2 blue cubes separated (by a red cube). Jeff 
interjected at this point with his statement: I have a question. Responding to 
the request to justify her solution path, Stephanie and her classmates engaged in 
a dialogue, rich with her responses to queries and challenges. She and her 
classmates expressed their ideas through representations, including written 
notations and verbal explanations. They constructed a table using symbols to 
represent the different possibilities for towers, which were arranged as cases. 
Examination of the close links between language and reasoning revealed 
Stephanie used her own invented notation and revealed informal “proof-like” 
reasoning. She used both everyday and academic language, including some 
aspects of the mathematics register and subordinating language devices, 
revealing complex language.

Stephanie’s justification for finding all possible towers, 3 cubes tall, when 
selecting from two colors reveals her ultimate success in offering a clear 
justification for her solution. She offered an argument by cases with symbols 
to represent the cube colors by showing the towers with no blues, 1 blue, 2 
blues together, 3 blues, and 2 blues separated. The discussion centered 
around understanding of her argument with two classmates suggesting that 
she organize by four cases (none, one color, 2 colors, and 3 colors). Stephanie 

Figure 2. Stephanie’s journey with the towers (grades 3—8): A metaphor for making connections.

opportunity to justify how she knew that she could account for all possible towers 3 
cubes tall when selecting from two colors. She built towers in 4th and 5th grades, 
which forms the foundation for this analytic. Subsequently, additional events reveal 
how Stephanie, as an 8th grader, used the towers as a metaphor to made sense of 
combinatoric notation for selecting a specific number of objects from a set. She 
connected this notation for tower choices when selecting from two colors to the first 
5 rows of Pascal’s Triangle. A summary of Stephanie’s work in the group for the 4th 
grade is as follows: Stephanie’s experience with the towers problem occurred in 
February of 1992, when she was in the 4th grade. Asked now to build towers that 
were 5 cubes tall selecting from two colors, Stephanie and her partner Dana took a 
different approach. They built certain patterns and then their opposites. During this 
interview, facilitated by Professor Carolyn Maher, Stephanie justified her solution by 
using an argument by cases showing the towers with zero blues, 1 blue, 2 blues, and 
3 blues.
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was adamant in explaining how she did it, presenting a valid case organization 
but one that was less elegant (splitting the 2 blue case into 2 blue together 
and 2 blue separated), thus providing some insight into her mathematical 
understanding. Importantly, one member (Jeff) who was absent in recent 
days, raised a question; an initial comment stimulates the rich mathematical 
dialogue among group members: I have a question. Do you have to make a 
pattern? Consequently, the remaining three group members (Stephanie, Milin, 
and Michelle) dedicated a process of explaining to him why or why not it was 
necessary to discover patterns to complete the counting task.

A closer examination of the content of Stephanie’s turns at talking also is 
revealing, since she was the student who took on the role of explaining to Jeff: it’s 
just easier to work with a pattern to participate effectively in the process. 
Importantly, Stephanie justified her solution by using an argument by cases 
showing the towers with zero blues, 1 blue, 2 blues (together and separated), 
and 3 blues. Her statements revealed her understanding of using mathematical 
symbolism to represent the physical model with cubes and thus apply an elegant 
representation to her problem solving. She incorporated some linguistic 
complexity for expression, via subordination. Additionally, she showed some 
metalinguistic awareness of the procedural aspects of the process.

Regarding her language more specifically, in the first cycle, most of 
Stephanie’s vocabulary choices employed everyday language (stuck together, 
that means, like okay I took). In contrast, in the second cycle, the term 
argument exemplified adoption of the more specific usage of the mathematics 
register. Stephanie included syntactic patterns of the conditional (if ), nominal 
(that and which), and adverbial (because) subordinators; and modal verbs 
(could); thus, displaying linguistically dense language, a defining characteristic 
of the mathematics register. Her pathway to providing an acceptable 
solution to the problem provides evidence of her efforts to coordinate greater 
conceptual complexity with greater linguistic complexity and specificity. 
However, Stephanie’s use of everyday language, including some subordinating 
devices, combined with her contextualizing of details (i.e., non-specific 
referents, such as it, this, and there, and her use of gestures and idiomatic 
Engl ish),  demonstrated that she mixed elements of  both everyday 
conversational language and the academic language mathematics register for 
expression of mathematical ideas.

This event demonstrates a small group working together well. The students 
were cooperative and showed their pragmatic abilities to take turns, rarely 
overlapping and rarely interrupting each other. They attended to each other’s 
comments and sustained their engagement with the mathematical problem 
presented throughout this event, and also throughout the entire session. For 
example, in responding to Jeff’s initial question about the need for patterns, 
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Stephanie explained her organization of using two blue cubes separated by a red 
cube in a separate category. Michelle and Milin argued that she could classify this 
tower into the category of exactly two blue cubes. Stephanie conceded that this 
was a possibility but reported the way she solved it; that is, by her original 
organization of five cases.

VMCAnalyatics: In Sum. Both of these examples of the VMCAnalytics with 
the associated language analyses demonstrate the potential value of a rich 
database for collaborative research. These insights may not have been possible to 
obtain without the video-taped interactions, which render the data permanent 
and accessible. Transcriptions derived solely from audio recordings and 
observational notes may not fully capture the fleeting but significant moments of 
students’ learning. Videotaped interactions that are available on the VMC allow 
researchers individually or jointly to attend, in detail, to the linguistic and 
mathematical behaviors of the students, enabling the discovery and documentation 
in fine detail of the learning process. Additionally, the VMC offers the possibility 
for researchers throughout the world to join the community and make use of the 
tools to build their own video narratives to accompany their work (https://
videomosaic.org/vmc_community).

Conclusion

The U.S. Common Core State Standards for Mathematics emphasize the importance 
of students’ mathematical reasoning and the conditions of the learning 
environment. These include highly interactive problem-solving groups that offer 
students opportunities to convey their understandings with multi-modal 
representations including language. One of the primary implications of this work 
is a demonstration of the benefits of a permanent, fully accessible database on 
children’s mathematical learning for the greater research community, so that 
members can explore their research foci with robust data. The examples provided 
in this article demonstrate how collaboration from multiple disciplinary lenses is 
facilitated by the availability of a rich database.

Finally, the analyses offered by the VMCAnalytics may be applied to preparing 
teachers who should be capable of facilitating conditions that invite student 
collaboration, meaning seeking, justification, and the use of language—both oral 
written. Prior research has investigated the extent to which teachers are able to 
recognize forms of reasoning that children express and whether it is possible to 
improve their ability to recognize various forms of mathematical reasoning 
through an instructional intervention (Maher et al., 2014; Mueller et al., 2012; 
Palius & Maher, 2013). The dissemination of this research has the potential to 
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inform the members of principal disciplines about the potential for shifting 
teachers’ beliefs about students’ learning to focus on what they really know about 
mathematical understanding, so that they can communicate effectively those 
understandings with language and non-language representations. It is crucial for 
teachers world-wide to recognize and sustain children’s mathematical knowledge 
and knowledge of the mathematics register, so that they may best support their 
students’ mathematical learning and the acquisition of the language that supports 
this learning (Bailey, Maher, & Wilkinson, 2018; Maher, Sullivan, & Wilkinson, in 
press).
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